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Abstract: It is well-known that chemotherapy is the most
significant method on curing the most death-causing dis-
ease like cancer. These days, the use of controller-based
approach for finding the optimal rate of drug injection
throughout the treatment has increased a lot. Under these
circumstances, this paper establishes a novel robust
controller that influences the drug dosage along with
parameter estimation. A new nonlinear error function-
based extended Kalman filter (EKF) with improved scaling
factor (NEF-EKF-ISF) is introduced in this research work. In
fact, in the traditional schemes, the error is computed using
the conventional difference function and it is deployed for
the updating process of EKF. In our previous work, it has
been converted to the nonlinear error function. Here, the
updating process is based on the prior error function,
though scaled to a nonlinear environment. In addition, a
scaling factor is introduced here, which considers the
historical error improvement, for the updating process.
Finally, the performance of the proposed controller is
evaluated over other traditional approaches, which implies
the appropriate impact of drug dosage injection on normal,
immune and tumor cells. Moreover, it is observed that the
proposed NEF-EKF-ISF has the ability to evaluate the tu-
mor cells with a better accuracy rate.

Keywords: chemotherapy; controller; drug dosage; error
function; extended Kalman filter.

Introduction

As cancer is turning out be a dreadful disease [1-3], it is
necessary to improve the diagnostic benefits of the
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treatment. Moreover, it is significant to compute the effi-
ciency of the chemotherapy plan and its viability. In fact,
chemotherapy [4—6] is a traditional technique that is used
for treating cancer in medical practice [37-40]. The deliv-
erance of chemotherapy drugs is found to be a better
therapeutic approach and it has attained a worldwide
consideration these days. Nowadays, engineering science
has contributed a lot to this research by formulating several
numerical designs, which demonstrates the impact of
chemotherapeutic drugs [7-9] and its dose.

These approaches were extensively deployed to
develop and analyze a variety of drug controlling tech-
niques [10-12]. These in “silico trials” are cost-efficient and
it assists engineers and clinicians to analyze the consistency
of new approaches for drug dosage in medical pharma-
cology. Nowadays, the combined usage of siRNAs and
chemotherapy drugs [13, 14] remains a better treatment for
cancer and it has gained much attention. The 2D-based
models of siRNA and chemotherapy drug [15, 16] intend to
minimize the side effects of the drugs and it also minimizes
the adverse harms occurring to normal cells. On the other
hand, after repetitive chemotherapy [17, 18], the severe un-
desirable effects resulting from chemo agents weaken the
outcome, thus resulting in diagnostic failure [19-21, 41, 42].

In addition, Kalman filtering techniques play an
essential role in estimating the dynamic states and it
enhances the estimation accuracy. It also improves the
precision and temporal resolution, thus ensuring a better
estimation of the drug dosage levels [22-24]. However, a
major issue in exploiting Kalman filter lies in setting up
the covariance matrixes. Therefore, EKF is introduced
that enhances the accuracy of dynamic state estimation.
In addition, EKF could be applied for estimating the
immune cells, and it can adjust the dosage of drugs and
thus control the normal, immune and tumor cells in
chemotherapy [25].

The major contribution of this paper is depicted below.
(1) This paper intends to present a novel robust controller

that influences the drug dosage together with param-

eter estimation.

(2) Here, a novel NEF-EKF-ISF is introduced and the
updating process is done depending on the prior error
function, though scaled to a nonlinear environment.
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(3) Further, a scaling factor is established that considers the
historical error enhancement for the updating process.

(4) Finally, the performance of the implemented controller
is compared over other traditional schemes that
demonstrate the impact of drug dosage injection on
normal, immune and tumor cells.

The overall organization of the work is as follows:
Section 2 portrays the review of the work. Section 3 de-
scribes the chemotherapy: nonlinear mathematical
formulation. Section 4 presents the modeling of the robust
adaptive control system and Section 5 portrays the
enhanced Kalman filter with improved nonlinear kernel-
based error function with scaling factor. Section 6 portrays
the experimental outcomes, and Section 7 concludes the

paper.

Literature review
Related works

In 2017, Regina et al. [1] have established a new method that
insists on the necessity of carrying out cancer chemotherapy
properly so that safe and effective treatment could be
ensured. The majority of the approaches developed for
scheduling cancer chemotherapy were model-oriented.
Here, an RL-based technique was presented for regulating
the dosage of chemotherapy drugs. Moreover, for optimal
control of drug dosing, the Q-learning scheme was exploi-
ted. Finally, mathematical models were offered that have
illustrated the performance of the adopted controller.

In 2019, Lai and Avner [2] have considered a combi-
nation of anti-VEGF and docetaxel for treating cancer. As
anti-VEGF minimized the penetration of chemotherapy
drugs, the issue comes up if it was much effectual for
managing the two drugs together, so as to minimize the
volume of tumor in an effective manner. For clarifying this
issue, an arithmetical model was developed and deployed,
by which various schedules were simulated. From the
analysis, it was discovered that the diagnosis of cancer
could be much better if the two drugs were taken in a non-
overlapping manner, with the anti-VEGF for 21 days and
chemotherapy drugs on day 0.

In 2018, Wu and Qiaodan [3] have formulated a model,
where the issues in drug therapy were designed as an
optimal problem of switched systems. It was varied from
the conventional switching control systems, where the
modes were switched based on time. Therefore, the con-
ventional optimal controlling schemes based on time
cannot be deployed for solving this issue directly, and
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hence a novel arithmetical evaluation scheme was devel-
oped for resolving these issues. At last, an arithmetical
model was exploited that showed that the adopted model
has rapid convergence speed and it has consumed less time
when evaluated over the existing schemes.

In 2018, Liang et al. [4] have presented an effective
model, which analyzed the effect of “autophagy protein
p62” in OSCC cells after and before chemotherapy. More-
over, CAFs were recognized in these OSCC samples that
explored the roles of CAFs and p62 in chemotherapy. In
addition, the associations among clinical outcomes,
expression of proteins and pathological features were
examined, and the attained outcomes proposed that
chemotherapy has raised the level of CAFs in OSCC.

In 2019, Khalili and Ramin [5] have presented a scheme,
where the optimal controlling signals were attained via the
steepest descent technique. Here, the solution’s logic was
evaluated with investigational outcomes. Subsequently, an
adaptive controller, which considered the optimal path
directed the system toward it. Further, “Barbalat lemma and
Lyapunov stability theory” were deployed that have
attained the stability of the closed-loop system. In addition,
an online recursive estimation technique was exploited that
have estimated certain parameters. Finally, the experi-
mental outcomes pointed out the efficiency and perfor-
mance of the modeled controller.

In 2019, Wang et al. [6] have introduced an effective
combination chemotherapy schedule, which has deter-
mined the drug dosage given to cancer patients with drug
resistance that might worsen the effectiveness of chemo-
therapy. For characterizing the growth of cells, the “cell cy-
cle-specific” approach was exploited, which included the
mechanism of attained drug resistance. To prevail over the
complexity in discovering a suitable solution to this issue,
MA was developed. Further, the effectiveness of the intro-
duced model was confirmed by evaluating existing schemes.

In 2016, Nazila and Lotfi [7] have developed a new
approach that dealt with the modeling of novel clinical
trials for gastroesophageal and gastric cancers, and this
scheme has discovered the cost-effective and optimal
chemotherapeutic treatment model. Initially, data were
extracted from the earlier clinical trials and then statistical
models were developed, by which the trial outcomes were
predicted. Then by using these arithmetical approaches, a
multi-objective scheme was presented for planning the
chemotherapeutic treatment. Finally, the outcomes
demonstrated that the adopted model required only
reduced cost and time when compared to the trial and error
model.

In 2016, Sofiane et al. [8] have suggested an effective
measurement-oriented controlling model for cancer
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chemotherapy. Here, a two-degree-of-freedom PID con-
trolling approach was presented for controlling the growth
of cancer. These PID controllers offered the desired quan-
tity of drug dosage to be provided into the body of patients
by concerning the level of toxicity within their mentioned
limits. The feasibility of the adopted cancer controlling
scheme was further confirmed by an example in this work.
Thus, the capability of the adopted controller was proved
from the simulation outcomes.

In 2018, Hajar Nasiri and Ali Akbarzadeh Kalat [29]
developed an intelligent controller for MIMO cancer
immunotherapy system. The main objective was to attain
an appropriate scheduling method for drug dosage to
reduce the tumor cells. An adaptive fuzzy back-stepping
controller for the MIMO cancer immunotherapy system was
developed using the back-stepping approach as well as
property of universal approximation of the fuzzy systems.

In 2019, Mojtaba Sharifi and Hamed Moradi [30],
developed a novel composite adaptive control scheme for
both of the minimizaion of cancer tumor volume and the
online identification oftumor parameters at the time of the
drug delivery process in chemotherapy. This control
scheme was exploited for three different nonlinear math-
ematical cell-kill models of the cancer tumor.

In 2018, Francisco F. Teles and Jodo M. Lemos [31],
worked on a control system which models an optimal
therapy on the basis of the adaptive control methods,
aspiring to permit the obliteration of a metastatic renal cell
carcinoma as rapidly and economically as probable, and
with lower related toxicity.

In 2019, Farouk Zouari et al. [32], studied the model of
neuro-adaptive tracking control strategies for non-integer
order non-square systems subject to time-varying output
constraints and input nonlinearities. At first, the mean-
value theorem was included, and then the original non-
affine non-square system with actuator nonlinearities was
converted into an equivalent affine square form.

In 2019, Farouk Zouari [33] worked on the neural
adaptive control of drug dosage regimens in cancer treat-
ment. The main aim of the treatment was to attain a suit-
able system for the drug dosage to minimize the tumor
cells.

Review

Table 1 shows reviews on the cancer chemotherapy dosage
systems. At first, the RL model was introduced in [1], which
guarantees effective treatment and it does not need
knowledge on system dynamics. However, it has to focus
more on adaptive RL models. PDE was exploited in [2] that
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are more effective and it also decreases the volume of the
tumor, but it requires consideration of combined therapies.
In addition, a Gradient algorithm was deployed in [3] that
offers rapid speed of convergence and it also offers reduced
computational time. Anyhow, it does not include penalty
terms. Likewise, the Spearman rank correlation scheme
was exploited in [4], which evaluates the association
among SMA and p62 expressions and it is a reliable
approach. However, it has to analyze the association be-
tween cancer cells and CAFs. Also, the steepest descent
method was employed in [5], which offers optimal cost
function and it personalizes the drug injection; however, it
has to focus more on the closed-loop control. MA was
exploited in [6] that minimizes the tumor cells and it also
offers improved sensitivity; anyhow, it needs to analyze the
realistic diagnosis via implementation. Ridge regression
scheme was implemented in [7], which offers reduced cost
and it lessens the effort and time, but logical parameters
have to be concentrated more. At last, the PID controller
was suggested in [8] that minimizes the processing time
and it also offers better accuracy. However, it has to focus
on the processing of control design.

Chemotherapy: non-linear
mathematical formulation

This work intends to develop a novel nonlinear control
scheme that is very much robust against the parameter
uncertainties. Here, the system’s performance is evaluated
by deploying the chemotherapy of the least order model.
The adopted scheme involves the interaction of tumor cells
with the normal and immune cells. Eq. (1)-(3) shows the
nonlinear model, in which ID(n), T(n) and D(n) signifies the
count of immune, normal and tumor cells at a time n,
correspondingly.

. pID-T
ID =st+ T q,ID - T — t,ID — y,i,ID 0

—

T=ra;T(1-ciT)-q,ID-T —q;TD - y,u,T )]

-

D=ra,D(1-cD)-q,TD - y,usD 3)

Here, the considered control inputs are drug injections. The
effect of the chemotherapy drug is signified by u;(n), u,(n)
and us(n), respectively, and y;, y, and y; denote the effect of
chemotherapy on destroying the cell population. In Eq. (2),
ra indicates the per capita growth rates. This model assumes
a type of immune cell, which can reduce the tumor size by a
kinetic process. In addition, the model includes immunity
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Table 1: Features and challenges of cancer chemotherapy dosage models using various techniques.

Author
[citation]

Adopted methodology Features

Challenges

Reginaetal. [1] RL -

It guarantees effective treatment.

Have to focus more on adaptive RL models.

— Do not need knowledge of system

dynamics.

Laiand Avner[2] PDE model —  More effective.

— It decreases the volume of the tumor.

It offers a rapid speed of convergence. -
Reduced computational time.

Evaluates the association among SMA -
and p62 expressions.

—  Reliable approach.

Optimal cost function. -
Personalizes the drug injection.

Minimizes the tumor cells. -
— Improved sensitivity.

Wu and Qiao- Gradient algorithm -

dan [3] -

Liang et al. [4]  Spearmanrank correlation -
scheme

Khalili and Steepest Descent Method -
Ramin [5] -
Wangetal. [6] MA -
Nazila and Lotfi Ridge regression method -  Reduced cost.
(71 -
Sofiane et al. [8] PID controller -
—  Better accuracy.

Lessens the effort and time.
Minimizes the processing time. -

—  Requires consideration of combined
therapies.
Do not include penalty terms.

Need to analyze the association between
cancer cells and CAFS.

Have to focus more on the closed-loop
control.

Need to analyze the realistic diagnosis via
implementation.

—  The logical parameters have to be concen-
trated more.

Have to focus on the processing of control
design.

cells where the growth is inspired by means of the tumor
existence such as T-cells. It is also presumed that the entire
cell populations are destroyed using a chemotherapeutic
drug with varied proportions.

Bone marrow and lymph nodes are certain resources,

which could develop a constant source for ID cells, st as
pID-T
T

saturation function with positive constraints that involve p
and a and this constraint directly reveals that the immune
cells are stimulated by tumor cells. Also g;ID-T reveals the
competition among the immune and tumor cells that cau-
ses immune cell loss. Here, y,u;ID denotes the immune cell
loss due to the injection of drugs, and t,ID symbolizes that
the immune cells get destroyed at t; natural death rate.

InEq. (2), ra;T (1 — ¢;T) denotes the enlargement of the
tumor cell population that is portrayed as the logistic term
with t;! utmost carrying capability and ra, growth rate. The
conflicts between the growth rate and death rate are
defined by the logistic growth term [26]. g,ID-T specifies the
competition among immune and tumor cells, which results
in tumor cell loss. Likewise, the conflicts among tumor and
normal cells are defined by g3TD which causes the tumor
cell loss and y,u,R refers to the tumor cell loss owing to
drug injection.

In Eq. (3), the population growth of normal cells is
indicated by ra,D (1 — ¢,D) as the logistic model with ra,

revealed in the first term of Eq. (1). Here specifies the

growth rate and t;'. In addition, y;u3D denotes the normal
cell loss owing to drug injection, and q,RD signifies the
conflicts among normal and tumor cells that cause normal
cell loss.

Modeling of robust adaptive control
system

In this section, a robust adaptive control system is
described for the third-order nonlinear model. Figure 1
demonstrates the schematic control structure diagram
to obtain the optimal Q and R as well as optimal dosage
control signal. The controller’s aim is to track the states
of the system (immune, tumor and normal cells) with
respective optimal values. So as to achieve this objec-
tive, the volumes of biological cells (immune, tumor
and normal) are evaluated over their optimal values
and the error signals are produced, and the dosages of
drugs are suggested as per this. In addition, for
modeling a robust system over parameter uncertainty,
the parameters are estimated and exploited in the
control loop. The third-order model of tumor given by
Egs. (1)-(3) is rewritten as in Eq. (4), which is further
rearranged in Eq. (5).
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Eq.(6) portrays the regression vectors. For considering
the uncertainty in the model, the constraints are
substituted with the assessed values and the parameters
vectors are obtained as specified in Eq. (7).
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Accordingly, to formulate a stable model, the states
(tumor, normal and immune cells) track their corre-

sponding optimal values and this is derived as per Eq. (8).
In Eq. (8), positive constants are denoted byy,, y, and ys. ID;

and ID ; are the optimal values and the derivatives of im-
mune cell. T; and T, indicates the optimal values of tumor

cells and its derivatives, D; and Bt are the desired values
and its derivatives of normal cells. On substituting Eq. (8)
in Eq. (6), Eq. (9) can be attained.

ID =ID - y,(ID~ID,)
T=T-y,(T-T) ®)
D=D;-y;(D-D)

Gy(ID; -y, (ID - ID,), ID, D, T)

~ID, - y,(ID - ID)]

IM

T
“|a+T
Gz(i —y,(T - T\),ID,D, T)

~y,(T=T))]

I:l—T 1-p—t "2~ U R |
)

o

-y;(D-Dy),ID,D,T

-y;(D-Dy)

1-p-T—— 5=~V
-| ;

)

The control law in Eq. (10) is considered as per the
regressor form of the system equation, in which 6,, 6, and

6; refers to the assessing vector constraints. In addition, the
adaptation law for evaluating vector parameter is given by
Eq. (11), in which Iy, I, and I3 denotes the symmetric
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positive definite constant measures. The error vectors of
the normal, immune, and tumor cells are signified by D, ID

and T, respectively as shown in Eq. (12).

u = G@l
u = GQQZ (10)
u; = G365
6, =ID -ID-T\G sign(y,)
6,-T-T- I,Glsign(y,) (11)
6, =D-D-T;Gsign(y,)
ID =ID-ID, (12)

Enhanced Kalman filter with
improved nonlinear kernel-based
error function with scaling factor

The measurement of immune cells is complex in the lab
environment and it also needs certain experiments and
therefore a nonlinear observer is required for assessing the
immune cells. In this research work, an EKF is exploited
with improved nonlinear kernel-based error function with
scalar function, and the processing steps are as follows.
In the initial stage, a discrete-time nonlinear system is
formulated as shown in Eq. (13), in which z; and wy refers to
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the measurement and process noise, correspondingly.
Here, z, and wy are fixed as zero-mean white Gaussian
noise together with two covariance measures denoted by R
and Q, as specified in Eq. (14). In Eq. (14),b, specifies the
measurement vector, which includes normal and tumor
cells and a; denotes the system states like the count of the
tumor, immune, and normal cells. These vectors are por-
trayed by Eq. (15).

b = f (i1, Uir) + Wi

ai = Ubk + Zy (13)
{wkw].T} =Q64 Q>0,
{z2]} =Réy R>0 (14)
e} -0

by = [IDx Ty Dil" (15)

ar = [T DiJ*

The cancer chemotherapeutic model obtainsf as per
the Egs. (1)-(3). Eq. (11) includes assessment parameter
values that are deployed in the ,” observer. Therefore, f is
determined as in Eq. (16).

PID, T

St+ Zi T, - qIDy Ty — t,IDy — y uyd Dy

_ _ _ _ - 16
raTi(1-¢Ty) - @D Ty — G5 Ti Dy — y un Ty (16)

7@,Dy (1 - C,Dy) — G, TiDx — ¥ susiDi

This EKF estimates various states by following two
phases (i) prediction (ii) update.

|
I
I
i
I
Dosage
! 1
! @} ritd] I_N’ Cell model
| l i Signal V
! . . 1
i State estimation ! l l
I
| l Estimation Estimation of Estimation
| l | of normal tumor cell of immune
| : cell cell
! Update and predict using | | l l
|
! eq. (17) and (18), and -
I using NEF-EKF-ISF ' Desired Desired Desired
i model, estimate R as i normal cell tumor cell tumor cell
| well as Q !
: : | |
! 1
After ].Error.
convergence estimation

Optimal Dosage

control signal and

optimal Q and R

Figure 1: Block diagram of control structure.
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Prediction: Eq. (17) determines the one-step predic-

o
tion of by, and the corresponding error covariance ma-
trix PRyji-1-

Update: Here, thePR, assessment and Bk state esti-
mation is performed as shown in Eq. (18), in which Kalman
gain is denoted byk;. Thus, the immune cell is determined
by Egs. (17) and (18), correspondingly.

biier =f(bk_1)

PRyy1 = ExPRLE; + O 17)
_of (b)
Ee==5p N,
bi = bijir + kk<ak - Ukbk\k—1>
ki = PRy UL (UiPRig1 Uy, + Rk)_l (18)

PR, = (PR, + UIRUY)

Improved nonlinear kernel-based error
function with new scaling factor for
covariance matrix estimation

The Kalman filter’s performance is entirely based on “how
the user chooses the exact Q, and R, for various applica-
tions”. As per the existing scheme, R, and Qy are fixed as
the constant matrix that is attained by trial and error
approach. However, problems arise during the selection
process, and hence to enhance the performance, in [28]
their introduces a novel covariance matrix estimation un-
der the nonlinear kernel-based error function. Subse-
quently, this research work intends to make a specified
enhancement with the existing error function by intro-
ducing a new scaling factor. Here, in [27] the estimation
schemes are classified into varied means, in which the
covariance matching is regarded as the well-known
approach for estimation. The scheme tunes the covari-
ance matrix of residual or innovation depending on the
theoretical values. While predicting the EKF, the innova-
tion is the variation amongst the actual and predicted
measurement, while the residual is the variation amongst
actual and estimated measurement. This error measure at
stepk(gy) is portrayed by Eq. (19), in which oy indicates the

measurement function, h;, and b; refers to the actual and
estimated value. For attaining better performance, an
enhancement is done with the error measure computation,
where the differential evaluation of error measure og; is
computed as specified in Eq. (20).
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o ueaf)]

o0& = exp(i—k) - &k

(19)

(20)
i

Residual-based improved estimation of R

The Ry estimation depending on innovation is indicated by
Eq. (21), in which the covariance matrix of innovation is
specified by H,. In this context, R, should be a positive
definite matrix; however, this is not the case as per Eq. (21),
as Ry is computed by performing the subtraction of 2 pos-
itive definite matrixes. For ensuring the positive definite
matrix, the adopted enhanced ESK model estimates the Ry
under d¢y as shown by Eq. (20). This novel Ry estimation is
given by Eq. (23), in which b shows the count of system
states and in Eq. (22), V refers to the defined improvement
factor.

Ry = H, - UVPR, UM 1)

V =Ry + (9&0¢f + UL'PRUNT) 22)
log(V

R, =50 @)

In the conventional methods [27], the error is calcu-
lated using the traditional difference function and it is used
for the updating process of the EKF. In our previous work
[28], it has been changed to the nonlinear error function.
Here, the updating process relies on the previous error
function, though scaled to a nonlinear environment. It is
obvious that the updating process should rely on historical
error improvements. Hence, in this research work, in-
troduces a scaling factor, which considers the historical
error improvement, for the updating process. Since the
error improvement at the n-1th instant is more significant
than the 2nd instant, appropriate weightage for the
instantaneous error improvement is important. By
considering this factor, we have formulated a scaling factor
for updating the principle that enables the updating pro-
cess as coarse-grained and fine-tuned. The formulation of
improvement factorV with the new scaling factor is given
by Eq. (24), where, SF denotes the proposed scaling factor.

V = Riy + (Oer0g] + U'PRUNT) x [SF] (24)

The scaling factor SF can be computed as per Eq. (25),
where, oe denotes the standard deviation, n refers to the
number of instants and we specifies the weight. Here, we is
computed as per Eq. (26), where In denotes the previous
instants together with the current instants and CIn refers to
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the current instants.Here oe is computed as per Eq. (27),
where nu refers to the number of data points, x; denotes
each value of data and X indicates the mean of x;. The
computation model of the considered parameters of SF is
given by Table 2 (exemplary table).

SF=26 3 we, 25)
n g
In
we = cn (26)
_fmo-%2
oe = z:zl YT (27)

Innovation-based estimation of Q

The process noise is computed as in Eq. (28) for estimating
the Qi_1. The average evaluation of Q with respect to time is
portrayed by Eq. (29), in which k; denotes the Kalman gain
and a denotes the forgetting factor (fixed as 0.3 as per [27]).
The overall contribution of adopted control theory by
deploying enhanced Kalman filter is given by Figure 2.

Wic1 = b = @ (biy, Ugq) (28)

Q= aQi1 + (1- @) (katitiky ) (29)

The EKF model differs from the conventional EKF
model in estimating the R by using a novel scaling factor.
The scaling factor transforms the estimated R value to a
new updating process so that the next state error can be
significantly minimized.

Results and discussion
Simulation procedure

The presented control theory for cancer chemotherapy was
implemented in MATLAB 2018 a. Here, the analysis was

Table 2: Computation of the scaling factor.

Number of  Error computa- Standard de- Weight factor
instants n tion Ae viation ge we
e Weight factor
(we)

1 - - -

e1—eo oe, 142
3 e,—eq oge, % + % + %
n e 1 —€n 2 ae, 142434 418
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Initializing covariance
(Qand R)

\ Estimating different
states

Prediction and update as
per Eq. (17) and Eq. (18)

Estimation of R and Q
by NEF-EKF-ISF
model

]

NEF-EKF-ISF model
Residual based enhanced estimation of R via the improved nonlinear J

=

kernel based error function with new scaling factor as in Eq. (23) with
new improvement factor as per Eq. (24)

new scaling factor as per Eq. estimation of Q

Presented estimation of R with
(25)

Innovation oriented J

Figure 2: Diagrammatic representation of proposed model.

carried out by setting the nominal constraints of chemo-
therapy as demonstrated in Table 2. Further, the perfor-
mance of the presented NEF-EKF-ISF control model was
compared over other existing approaches such as EKF [10],
AEKF [27] and NEF-EKF [28] and the outcomes have
confirmed the efficiency of NEF-EKF-ISF in controlling the
states (immune, normal and tumor cells). “In statistics, the
MSE or MSD of an estimator (of a procedure for estimating
an unobserved quantity) measures the average of the
squares of the errors—that is, the average squared differ-
ence between the estimated values and the actual value. It
is always non-negative, and values closer to zero are
better”.

3-D analysis

The impact of the adopted control theory (NEF-EKF-ISF) on
controlling three states (normal, immune and tumor cells)
is demonstrated by Figure 3. The objective of this control
theory is to determine the dosage of drugs, which could
completely destroy the tumor cells. The attained results
show the demonstration of how much the presented
approach comes closer to eliminating the tumor cells.

Convergence analysis

Figure 4 shows the time response of the entire states
attained by the system. The addressed values are the
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Figure 3: 3D analysis on the impact of
proposed and conventional control theory
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Figure 4: Convergence analysis (a) EKF (b)
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Figure 5: Control Signals under
chemotherapy drug dosage (a) EKF (b) AEKF
(c) NEF-EKF (d) NEF-EKF-ISF.

Figure 6: Response of control signals for
error signal variation : Proposed and
conventional control theories under
chemotherapy drug dosage (a) immune
(b) normal (c) tumor.
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Table 3: Nominal chemotherapy parameters.

Parameter Value
V1 0.05
Va2 0.15
V3 0.1
ra, 1.5
ra, 1.0
t 0.2
g1 1.0
g2 0.5
gs 1.0
qs 1.0
! 1.0
;2 1.0
st 0.33
o 0.3
p 0.01

estimated values, that when utilized in the controllers, the
states could track their corresponding optimal values.
From Figure 4 (d), the tracking of desired values particu-
larly the tumor cells depicts that the presented work is
stable in the existence of a modeled observer. Thus, the
implemented NEF-EKF-ISF observer attains better out-
comes by tracking the desired values of the state.

Convergence analysis of injecting drug
dosage

The graphical illustration of the chemotherapy drug dos-
ages u;, U, and us that converges the normal, immune and
tumor cells to their corresponding desired values is given
in Figure 5. Since the major intention of this work relies on
converging the values to the optimal values, the presented
scheme attempts to converge by providing control signals
to the entire states. Figure 5(d) shows the betterment of the
adopted model in attaining the desired values.

Error analysis

This section explains the error performance with respect to
the control signals for three states namely, normal,

DE GRUYTER

immune and tumor cells. From the attained outputs, the
presented method has attained a reduced error value over
the other conventional schemes. From Figure 6(c),
at —0.4th error value, the control signal value of the
adopted scheme is 60%, 80% and 20% better than EKF,
AEKF and NEF-EKF approach. Thus, the enhancement of
the adopted scheme is proved from the simulation
outcomes.

Time analysis

Figure 7 demonstrates the occurrence of error for the pre-
sented method over the traditional approaches with
respect to the time represented in days. From the analysis,
the reduced error value is achieved by the presented
scheme with an increase in time, when evaluated over the
conventional schemes.

Error analysis

Figure 8 demonstrates the occurrence of error for the
developed algorithm over the existing algorithms con-
cerning the time represented in days. From the analysis,
the error value is reduced by the developed model with an
increase in time, when evaluated over the conventional
schemes.

Overall performance

The overall performance of the presented scheme over
other existing approaches on tracking the desired values of
the states (immune, normal and tumor) is demonstrated in
Table 4. From the analysis, the proposed control theory is
found to have attained the closest desired values over the
other compared models such as EKF [10], AEKF [27],
NEF-EKF [28], NN [34], ANFIS [35] and reinforcement
learning [36]. In addition, the least estimated values are
obtained by the tumor cells, which also indicate the non-
existence of the tumor cells. Therefore, better parameter
estimation is proved to be attained by the presented

Table 4: Overall performance of proposed control theory over other conventional theories.

EKF [10] AEKF [27] NEF-EKF [28] NN [34] ANFIS [35] Reinforcement learning [36] NEF-EKF-ISF
Immune cells (mol) 1.3394 1.2686 1.2119 1.0453 1.0453 1.3274 1.0453
Tumor cells (mol) 0.024439 0.02461 0.021895 0.021542 0.020884 0.036439 0.020437
Normal cells (mol) 0.87244 0.84626 0.84626 0.84675 0.84627 0.88192 0.84626
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over the other conventional

Analysis of error function

The analysis of the error function is illustrated by Figure 9
with respect to the number of instants. Here the error
function of the scaling factor SF and standard deviation oe
are computed, which demonstrates the decrement of the
error value with an increase in the number of instants.
Thus, the enhancement of the updating process is proved
to be better using the presented NEF-EKF-ISF scheme.

Conclusion

This paper has presented a novel robust controller that
influences the drug dosage together with parameter esti-
mation. Here, a novel NEF-EKF-ISF was introduced and the
updating process was done depending on the prior error
function, though scaled to a nonlinear environment.
Further, a scaling factor was established that considered
the historical error enhancement for the updating process.
Finally, the performance of the implemented controller
was compared over other traditional schemes that
demonstrate the impact of drug dosage injection on
normal, immune and tumor cells. On considering the time
response of the entire states, the tracking of desired values
particularly the tumor cells was found to be stable in the
existence of modeled observer as per the presented work.
Further, at —0.4th error value, the control signal value of
the adopted scheme was 60, 80, and 20% better than EKF,
AEKF, and NEF-EKF approach. Thus, the parameter value
estimation of the implemented NEF-EKF-ISF approach in

Mohite and Patel: Robust controller for cancer =—— 13

attaining the desired values of system states was
confirmed.
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